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Abstract. To gain a better understanding of the generation of optical solitons we investigate 
the linear eigenvalue problem associated with the non-linear Schrodinger equation. Two 
families of initial envelope functions are  discussed. We find that,  for a purely imaginary 
initial envelope function of width a and  height b, and  its Galilei transforms, the soliton 
number of soliton bound states is the integer smaller than $ +  ab/ x. For the initial envelope 
function ip exp(-cu/xl) and  its Galilei transforms, the soliton number of soliton bound 
states is equal to the number of intersections of the Bessel functions J-,,, and  * J ,  ,z below 
p / o ,  which is the integer smaller than ;+2p/a?r. 

Soliton propagation in optical fibres was predicted by Hasegawa and Tappert [ 11 and 
was first observed by Mollenauer et a1 [2]. Since solitons could play an important 
role in data communication a good understanding of the soliton content of pulses 
from different types of sources is important. This understanding can be gained by 
investigating the linear eigenvalue problem associated with the non-linear Schrodinger 
equation [3]. This eigenvalue problem is an example of the A K N S  2 x 2 system and, 
as such, has been extensively studied [4]. In this respect the situation is similar to the 
case of the Korteweg-de Vries soliton where the soliton content of a wave is given by 
the discrete spectrum of the associated Schrodinger equation (for a review, see [SI). 

In another aspect, however, the situation is different. Whereas our intuition, trained 
in quantum mechanics and backed up  by sophisticated mathematics, helps us to 
understand the soliton content of a Korteweg-de Vries wave, comparatively few 
examples of special input pulses have been worked out in detail to develop our 
understanding in the case of the eigenvalue problem associated with the non-linear 
Schrodinger equation. After the pioneering work by Zakharov and Shabat [3], Satsuma 
and Yajima [6] have started a systematic study of this eigenvalue problem and have 
discussed the initial envelope function ysech(x )  as a special case. Now that the 
principles of soliton generation are well established experimentally the systematic 
theoretical study should be intensified. With this perspective in mind we want to add  
to the understanding of the eigenvalue problem. 

The electic field E ( r ,  2, f) in a monomode optical fibre may be expressed as 

E ( r , 2 ,  t)=Re(@(X, t ) R ( r )  exp[i(kf-wl)]} (1) 

where k is the wavenumber in the 2 direction and R ( r )  is the linear eigenfunction of 
the mode excited in the fibre which depends on the coordinate perpendicular to 2. It 
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can be shown [7 and references therein] that, if fibre loss and higher-order dispersion 
are negligible, the normalised envelope function @, denoted as U, satisfies the non-linear 
Schrodinger equation: 

du 1 d'u i -+- -;+ / u / ' u  = 0. 
a t  2 ax- 

Here, t and x are the normalised coordinates X and I -  X/ cg, respectively, and ug is 
the group velocity. 

To find out which type of initial envelope function generates solitons one does not 
have to solve the non-linear partial differential equation (2). All the information about 
the existence of solutions can be obtained from the eigenvalue problem [3] 

A = (  i d l d x  
AV = AV with 

- u * ( x ,  0) -i d / d x  (3) 

(Here and  hereafter an  asterisk denotes the complex conjugate.) Each discrete eigen- 
value A = K +i77 with L'-integrable eigenfunction corresponds to a soliton with ampli- 
tude 277 moving with velocity 2 ~ .  Equivalently, each one of the two second-order 
equations: 

together with its corresponding first-order equation (3) contains all the information 
about solitons. 

Since A is not a normal operator most of the standard theory does not apply. For 
this reason we solve the eigenvalue problem (3) for two special families of initial 
envelope functions explicitly. Both families consist of a purely imaginary u ( x ,  0) 
together with its Galilei transforms u ( x ,  0) exp(-iVx) [6]. Because a Galilei transfor- 
mation only shifts K by iV, we can concentrate on u ( x ,  0) itself and  determine its 
discrete eigenvalues. In fact, we concentrate on the purely imaginary eigenvalues of 
A. ( In  [3], it is claimed that these are all the eigenvalues of A in the case of purely 
imaginary u(x, O).) Therefore, the solitons which we might find in the initial Galilei 
transformed pulse constitute a soliton pulse varying periodically in shape and propagat- 
ing with velocity V [3,6]. This pulse is called a bound state of solitons, which is the 
type of soliton pulse observed in experiments. 

For purely imaginary u(x, 0) = - iq(x) ,  which falls off fast enough at ico, we want 
to find all continuous solutions of 

with asymptotic behaviour 

( r2 and r3  are Pauli matrices). After solving for positive and negative x, we will always 
be able to match the two parts of U?, say, by choosing an appropriate value for c. 
Matching the two parts of v ,  means finding the eigenvalues 77. If q is not large enough 
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As a second special case we study ( 5 )  for 

q ( x )  = p exp( -a /x l )  a,  p > 0. 

For this q, (4) can be written as Bessel’s equation [8]: 

d’$ 1 d$  ( :f) ,+--+ 1 - 7  * = o  
ds-  s d s  

if we use the 

For all x 

following variables: 

U 1  x>o: s = - P exp( - a x )  $=+ 
CY \/S 

The solution of (15) with correct asymptotic behaviour at s = 0 is the Bessel function 
of order v :  

x ( - 1 ) m (is) v + 2 m  

J’(s) = 2, T ( v +  171 + 1 ) U m  + 1) 

- - +2)” r (v+i )  1 2 [ 1 --(2)? v + l  1 2 + 2 ( v + l ) ( v + 2 )  (+..I 4 

with v =  CY -;> -4. Hence 

I 1 u  

u 2 = - 2 ” ( i )  r ( v + l ) & J , + l ( s )  ( 1 9 ~ )  

x>o :  u2 = c2’( i )  ‘ a r( v + 1 )&J, ( s )  

v u  

u I = - c 2 ’ ( F )  T ( v + l ) & J , , , ( s )  (19b) 

are the solutions u1 and v? .  
Continuity of U ,  and v2 at x = 0 implies c = F1 and 

J ” ( P / Q )  = * J ” - , ( P / a )  U > -4. (20) 

This is the eigenvalue relation for q ( x )  given in (14 ) .  77 is an eigenvalue if J ,  intersects 
J,, , ,  or -Ju+l  at p / a ,  where v = q / a  -4, We therefore have to study the points of 
intersection of J ,  with + J , , + ,  . 

Let s z ,  v = -;, denote the coordinate of the nth point of intersection of J - l , 2  and 
* J 1 , ? .  Since 
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s;l”= ( 2 n  - 1 ) : ~  holds. If, starting from v = --+, we increase v then the points of 
intersection will change continuously with v. This follows from ( 1 8 ) .  Furthermore, 
while increasing v, no pair of intersections will move together to coincide and no  new 
additional intersections will develop. The first statement must be true because the 
zeros of J ,  and J,,, ,  separate each other. If the second statement were false, an 
intersection would have to split into at least three intersections for some v = vo at some 
s = s?. This would imply that Jyo and fJ,,,+, and their first two derivatives are equal 
at s,”o ( vo > - f), which contradicts Bessel’s equation. 

So far we have seen that s,”, which is continuous in v, labels the points of intersection 
of J ,  with i J v t l .  That s,” + 00 for n + cc follows from the fact that J ,  has arbitrarily 
large zeros. Also s : - + ~  for U + = .  This can be seen as follows. The first term in 
( 1 8 )  is the dominant one if s <  v i t 3  and  if v is large. However, ( . s / 2 ) ’ / r ( v + l )  
and ( s / 2 ) ” + ’ / r (  v + 2 )  d o  not intersect for any s < v ” ~ .  ( In  fact, they intersect at 
s = 2 ( v + 1 ) . )  

Finally, we show that s i  is monotonically increasing with v. Equation ( 5 )  implies 

for any w. If we change q by a small amount 6q and thus v by Sv and 77 by 677, we obtain 
+X 

- 2677 v i  v z  d x  = ( 2 3 )  

to first order, using ( 2 2 ) .  Since 

jTx 6qvTv d x  > 0 
- X  

for positive definite 6q and 

v increases if p increases. (That the inequality (25) holds can be deduced from the 
fact that the first zero of J- , ,> is at :T> 1 and that the first zero of J ,  increases with 
v.) This rules out the possibility of sz decreasing at any v. s: also cannot stay constant 
for any range of v. If it did, 677 f O  and 6q=O would be possible, which again 
contradicts ( 2 3 ) .  

Our analysis shows that the soliton number N is equal to the number of intersections 
of J-lt2 with * J ,  below p / a ,  which is the integer smaller than 4 + 2 P / a ~ .  Since ( 1 3 )  
yields F = 2 p  / a ,  again 

N = ( i + F / . r r )  ( 2 6 )  
holds. To understand our results better we intend to extend our analysis to the 
‘non-soliton’ part of the pulse. Our main aim, however, is to use the experience gained 
from studying our two examples and the sech(x) pulse to discuss ‘realistic’ pulses from 
‘realistic’ sources. 
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